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ON THE REDUCTION OF RANK-ONE DRINFELD MODULES 

DAVID R. HAYES 

ABSTRACT. The Drinfeld modules of rank one associated to all elliptic curves 
over the finite fields IF2 and IF3 are computed in explicit form. These examples 
illustrate the theory of the j-invariant of such modules as developed by Gekeler 
and Dorman. 

Let f(x) E lFq[x] be a monic polynomial of odd degree n > 3, and let 
k/Fq(x) be the hyperelliptic extension obtained by adjoining a root of 

(1) y2 =f(X) 

if q is odd, or 

(2) y +axy+a3y =f(x) (al, a3 E Fq , not both zero) 

if q is even, to the field of rational functions Fq (x). If q is odd, we require 
that f(x) be square-free, which means that the affine plane curve defined by 
(1) has no singular points. For q even, we restrict f(x) and a1, a3 also by 
requiring that the affine curve defined by (2) be nonsingular. In either case, the 
affine coordinate ring A = Fq [x, I1y] is integrally closed in k. 

Since n is odd, the infinite place of Fq(x) ramifies in k/Fq(X). Let oo 
denote its unique extension to k, and let k. be the completion of k at oo. 
Fix VIX E kco, and let sgn: k0, > Fq be the unique sign-function for which 
sgn(l/v/x-) = 1. We choose y so that sgn(y) = 1. 

The ring A is the ring of functions in k which are holomorphic away from 
oo. Let p be a sgn-normalized rank-one Drinfeld A-module defined over the 
algebraic closure of k. Then p is determined by its values 

px =x+aq3+(o 2 

2+ 
n-l 

+ 
n 

Py = y + C1O + C2( +'+nC-I( +nC 

where cn = sgn(y) = 1 and the coefficients a, c1, c2, ... , cn- are elements of 
the Hilbert Class Field H of A. The degree hk = [H: k] is the class number 
of k . Let B be the integral closure of A in H. One knows that the coefficients 
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of Px and py actually belong to B. In fact, because deg(oo) = 1, we have 

Theorem 1. The A-module p is a universal sgn-normalized Drinfeld A-module 
of rank one. This means that if y: A -* K is any lFq-algebra morphism from A 
into a field K and if z is a sgn-normalized rank-one Drinfeld A-module over 
K, A acting through y, then y extends to B in such a way that T = y p. 
Further, the coefficients a, cl, ... , cn- generate B as an A-algebra. 

For the theory of rank-one Drinfeld modules, the reader may consult [6] or 
Chapter IV of [4]. 

Let '30 be a prime ideal of B, and let po = 930nA. Let PO be the monic irre- 
ducible polynomial which generates the ideal po n Fq [x], and put d = deg(PO) . 
The results in ? 1 below impose conditions on the ideals 30 which divide the 
coefficient a of (0 in px. At such a 30, the reduction p of p over B/930 
has the form 

2 

2 ~~~n-i n 
py = Y + C P + C2 +' ++ Cn-1 + ( 

where for any t E B, 7 denotes the reduction of t modulo 30. For odd q, 
Dorman [2] has found the full prime ideal decomposition in A of the norm 
of j(a) = aq+1 from H down to k. His work is based upon the theory of 
j-invariants introduced by Gekeler in [5]. The results in ? 1 overlap those of 
Dorman to some extent; however, our point of view is computational, and the 
methods of proof are therefore more elementary. 

In ?2 below, we compute the Drinfeld A-modules of rank 1 associated with 
elliptic curves (n = 3) over IF2 and IF3 . These examples serve to illustrate and 
illuminate the theory. It is a pleasure to thank D. Dummit for checking the 
most complicated of these examples via Mathematica. 

1. SOME RESTRICTIONS ON THE DIVISORS OF a 

Let vo be the normalized valuation at po . Since p is a rank-one A-module, 
its reduction modulo 30 will have height one. This means that if htp(z) is the 
smallest exponent s such that (ps appears in pz with nonzero coefficient, then 

(3) htp(z) = vo(z) * deg(po) 

for all z $ 0 in A. 

Proposition 1. Suppose PO = x + a has degree d = 1. Then 930 divides a if 
and only if PO is inert or ramified in k/Fq(X). 

Proof. Since px+ = (x+a)+a(+( 2, 30 divides a precisely if htp(x+a) = 2, 
which in turn is equivalent to vo(x + a) * deg(po) = 2. Thus, 30 divides a 
exactly when one of deg(po) and vo(x + a) equals two and the other equals 
one. El 
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Proposition 2. If X0 divides a, then deg(PO) = d is odd and d < n. Further, 
Tr= ? for all odd r such that 1 < r < d, 

(4) (q2-_)c2 = (q2 

and 

(5) (q -X)r = (r-2 -Cr-2) 

for all even r with 2 < r < n. 

Proof. Let / be the unique odd integer such that cl :$ 0 but cr = 0 for all odd 
r 1< r < 1. Since c = 1, 1 exists and 1 < n. By comparing coefficients of 
(p in the identity 

(6) (X-+ (P2 TY = T + 2 

we see that ( T - Y)c1 = 0. As c/ $ 0, Fq[x]/(Po lFq[x]) is isomorphic to 

a subfield of the field of q1 elements. Therefore, d divides 1. The stated 
relations on the Tr for even r follow readily from (6). D 

2 Lemma 1. Let T be the rank-two Fq [x]-module determined by x }_4 x + (p , and 
let I denote its reduction modulo PO. Then the height of T equals one when 
deg(PO) is even, and equals two when deg(PO) is odd. 

Proof. Put ,u = o , and let z also denote the rank-one lFq2[x]-module deter- 
mined by x |-4 x + V/. This abuse of language is justified by the fact that this 
new module restricts to the given one on Fq [x]. Let Q0 be a monic irreducible 
in Fq2[X] which divides PO, and let T also denote the reduction of I modulo 
Q0. Since T has height one as an lFq 2[x]-module, (3) implies that 

(7) ht?(Qo) = deg(Qo). 

- d 2d If d is odd, then Q0 = Po. In this case, TPO = = ( , so that T has height 

two as an Fq[x]-module. If d is even, then PO = QO * Q0Frob in Fq2[X] . From 

(7), we see that T = r = (pd where r = deg(Qo) = d/2. Therefore, 

T= (P d (Q0rob + higher-order terms in qV), 

which proves that T has height one as an Fq[x]-module. El 

Proposition 3. Suppose X0 divides a. Then PO is inert or ramified in klFq(X) 
Proof. Let z be the restriction of p to Fq[X]. Then T is the rank-two Fq[X]- 

2 module determined by x ~-+ x + (P . Since deg(PO) is odd by Proposition 2, 
T has height two by Lemma 1. Therefore, htT(Po) = 2 deg(PO), which together 
with (3) shows that vo(PO) . deg(po) = 2 deg(PO). El 
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Proposition 4. Assume that q is odd and that PO = f(x) - a, where a E Fq is 
either zero or a nonsquare. Then a is divisible by at least one prime ideal of B 
lying over PO. 

2 Proof. Note first that y2 f (X) =a (mod po) . By our hypothesis on a, either 
= 0 or else y 2_a is irreducible modulo P0. In any case, Yjm + ) = 0 because 

z z + zq is the trace map from Fq2 down to Fq. Therefore, 

jyqn = (-l)ny= - 

2 as n is odd. Let T be the rank-two Fq[x]-module determined by x -4 x + (2 
2nn Then Tf(x) =Tp+a =a + (p by Lemma 1. If we put -f = jT + (o , then 

(I )2 y2 + (yqf +ly) n + , 2n =..2 + 2n 2n 

Thus, Y extends to a rank-one A-module defined over A/po. By Theorem 1, 
T is a reduction of p. Since the kernel of this reduction sits over p0, it must 
be a conjugate of X0. E 

2. EXAMPLES 

The identity Px * = Py px provides an algorithm for computing the 
coefficients a, c, c2, .. ., cn - when q and f(x) are assigned specific values. 
By comparing the coefficients of like powers of (o on both sides of this identity, 
one can solve recursively for the coefficients cl, C2, ..., Cni1 in terms of a. 

The equality of the coefficients of (0fn and (0n+l then yields two polynomial 
identities for a with coefficients in A. Let T(a) E k[a] be the monic greatest 
common divisor of these two polynomials. Any root of T(a) determines a sgn- 
normalized rank-one A-module in the algebraic closure of k. By Theorem 1, 
this root lies in B and generates H. Therefore, T(a) is a power of the minimal 
polynomial over k of any one of its roots. Since these roots all lie in the integral 
closure B of A, T (a) E A[a]. One can find the minimal polynomial itself 
by computing greatest common divisors with derivatives in the standard way. 
Since the minimal polynomial has degree hk in a, this procedure provides an 
algorithm for computing the class number of k. 

For the case of elliptic curves (n = 3), we find 

Yq y 
(8) c1 =a . 

2 

2 q 2 
_ q 

2 2 3 

2 3 

(11) ~ ~ ~~ qc~ a - _a. 

Suppose that n = 3 and q30 divides a. By the results in ?1, '30 lies over an 
irreducible P0 of degree one or three, which is ramified or inert in k/lFq(x). 
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Proposition 1 completely characterizes the divisors of a which lie over a linear 
PO. The following proposition provides a useful characterization of the cubic 
irreducibles PO which lie under a divisor of a when q is odd. 

Proposition 5. For q odd, assume n =d = 3, and let f(x) =X +a X3 +a fx+y. 

Let a be the coefficient of x2 in PO. Put 

2 

t = .YE k. 
q2 

x -x 

Then a is divisible by at least one prime ideal of B lying over PO if and only if 
PO is inert or ramified in k/lFq(x) and either a = a and I = 0, or else a - a 

is a nonsquare in IFx and 2 a - J. 

Proof. Assume that a is divisible by '30. Then PO is inert or ramified in 
k/lFq(x) by Proposition 3. By (8) and (9), we have 

2 2 
+(3. 

pX=X-+v2, _y+tv2 +v3 

Since xq3 = x and x-+ yq + xq = -J, we find after some computation that 

- ~ ~ ~~~~Y2 2 1 y+q 
2 2q 2 2 a 4 6 

Pf(x) =f (x)+(+a(X+x ) + +x T+x )242 2(a )p +P 

(TY) = Y2 _ Yq 2 2 + (_ _q3 3 2 6 + + 

Since the coefficients of (0 must be equal, we see that 11+q - a-J5. Therefore, 

either 7= a -J= 0 or else 1q = (a- _)_1 , which implies q = 7. Since 
deg(PO) =3, A/po does not contain a field of degree four over Fq . Therefore, 

we infer that 1q = t, which shows that t = a - (. Since the coefficients of 
5 q ~~~~~~~~~~~~~~~~~~~~~~~~3 (o in the above pair of equations must be equal, q = -, which implies that 

t lFq . Therefore, a - ( is a nonsquare. 
For the converse, let PO be inert or ramified in k/lFq(X). Assume first that 

2 

t = a - ( = 0. Then 57 = y7, which shows that f(Y) E lFq. Appealing to 
Proposition 4, we see that a must be divisible by a prime ideal of B lying 

2 
over PO. Assume next that a - ( is a nonsquare in F X and that 7 = a _ ( . 

q 

Let z be the rank-two lFq[x]-module determined by x |-4 x + (o2, and define 
-2 3 

Ty =y+ tu + 03 . Computing as above, we find that 

++q2 ) 2 +q 2q2 2 + ( 4 + 6 

Tf(X)=f(X)+(fi+a(X+X )+Y +x +x ( (-()O+ 
2 2 2 )2 2 Y 3 3 ++q2 4 + q3 5 + 6. 

(No ) = y because either y7= +( )7 +oo 
3 -~~~~~~~~~~~~2 Now r7 = -57 because either 57=0 or else 57 is a nonsquare in A/p0, and 
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this implies that 
( 2 j ~q3v 

2 2 

q3 q - y 
_ J y)-qX 

72 2 7 

yq -_ Xq -X 

3q -3 2 (q2 

whihesows, (tha =tf)exptosilfr the coefficients of (0aeloeqa.Ths exe fndso 

ran n A- m yo f (over /- Bi) 

U 3-3 + a (U2 _ y2) + fl(U-X-) 

2 

where U = xq .Thus, 

7(y 
+ 

y f =+ a(U + ) + U2 + Uy+ y2 

which shows that the coefficients of (p2 are also equal. Thus, T extends to a 
rank-one A-module defined over A/po . By Theorem 1, T is a reduction of p; 
and the kernel of this reduction must be one of the conjugates of X0 . D 

The examples presented in the remainder of the paper provide a complete list 
(up to isomorphism) of universal sgn-normalized rank-one Drinfeld modules for 
the case n = 3 over F2 and F3 . This list includes some of the examples given 
in ? 11 of [6]. They were computed by the method described above with the help 
of computer programs written in APL. In practice, one solves (8) and (9) above 
for c1 and c2 modulo a prime P E IFq[X] which is inert in k/Fq(X), and then 
finds the greatest common divisor Tp(a) of (10) and (1 1) modulo P. If deg P 
is large enough, Tp(a) = T(a); and one can verify this equality by checking (8)- 
(1 1) without reducing modulo P. If this check fails, one chooses another inert 
P and repeats the calculation. A candidate for T(a) which reduces to Tp(a) 
modulo all the primes of reduction can be found via the Chinese Remainder 
Theorem. 

Of course, the monic irreducibles dividing the constant term of T(a) are the 
polynomials PO lying under divisors 'Po of a. 

2.1. Elliptic curves over F2. In the set of eight cubic polynomials over F2, 
{X3 + X + 1, X3, X3 + 1, X3 + X} is a subset of representatives for the orbits 
under the action of the translations {x |-4 x, x |-4 x + 1 }. In Examples 1, 3, 4, 
and 6 below, we take f(x) from this subset with a, = 0 and a3 = 1 in (2). In 

Examples2and5,wetake f(x) =x 3+X 2+1 and f(x) =x3 +1 with a 1 
and a3 = 0 in (2). These six curves represent all isomorphism classes of elliptic 
curves over F2 (see ?4 of [3]). Example 1 is the only one of our examples which 
occurs in the known finite list of curves with class number one. Of course, one 
can easily compute the class number in any one of the examples presented here 
or in ?2.2 below by counting the number of rational points on the elliptic curve. 
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Example 1. Consider y2+ y = x3 + x + 1 . For this curve, we compute 

T(a) = a + (x + x). 

Therefore, hk= 1 . We find that 

2 
P+2, 

pX =x+(x +x)?o+p 
2 y)P + X(Y2 + y) 2 + 3 

py =y+(y +y)oxv+)o+O 

In this example, PO = x and x+ 1 are inert, and PO = x +x+ 1 and x +X2 +1 
both split. 

Example 2. Consider y + Xy = x + X + 1 . For this curve, we compute 

T(a) =a 2+(x2 +x)a+(x3 +x). 

Therefore, hk = 2. We have B = A[z] with z2 + z = 1 + X, and we find that 

+(2, 
2 3 

px=x+a(+( P, py=Y+C1(O+C2 ( + ( 

with 

a = (x + 1)(xz +y + 1), 

c1=(z+1)(x +x +1) y(x +xz+z), 

2~~~~~~ c2=y(x3+x+1l)?z(x +x +x+ 1). 

In this example, PO = x ramifies and PO = x + 1 is inert while PO = 3+ x + 1 

and PO = x3 + X2 + 1 both split. 

2 3 Example 3. Consider y + y = x . For this curve, we compute 

T(a) = a3 + (x + x)a + (x + 1) a + (x + 1). 

Therefore, hk= 3. We have a = (x + 1)b, where 

b3+xb 2+b+(x+ 1)=0, 

and we find that 
2 2 3 

pX=x+(x+ 1)b(o+(o , Py=Y+C1(+C2(O +( 

with c = x 2b and c2 = x 2b2+xb+x. Therefore, B = A[b]. By a computation 
of the norm, we observe that c2 is divisible by a place over x3 + x + 1. In 

this example, PO = x splits, PO = x + 1 is inert, P0 = x+ + 1 splits, and 

PO = x3+ x + 1 is inert. 

Example 4. Consider y + y = x3 + 1 . For this curve, we compute 

T(a) = a3 + (X2 + x)a2 + X2a + x4 

Therefore, hk= 3. We have a = xb, where 

b3 + (x + 1)b2 + b + x = O, 
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and we find that 
2 2( 3 

px =x+xb~+p , pp =y+c=p+c jo +f 

with cl = (X2 +x+ 1)b and c2 = (x+ 1)2b +(x+ 1)b+x. Therefore, B = A[b]. 
By a computation of the norm, we observe that c2 is divisible by a place over 

6 3 p0=X+1Sltp 3 X+1 X + X + 1 . In this example, P0 = x is inert, P0=x+1 splits, P0=X + X+1 
splits, and P0 = X3 + X2+ 1 is inert. 

Example 5. Consider y2 + xy = X3 + 1 . For this curve, we compute 

T(a) = a + (X + x)a3 + (X3 + x)a2 + (x4 + X3 + x2)a + 2( 3 +21). 

Therefore, hk = 4. We find that 
2 2 

+(3, 
px=x+ap+(o, py=y+c (o+c2I( + o, 

with cl = a(x + 1 + (1 + y)/x) and c2 = X2 + x+(a3 + xy + x)/x2. We have 
found no convenient generators for B over A for this example. Here, P0 = x 
ramifies and P0 = x + 1 splits while both P0=x3+x+1 and P0 = x3 +X2 + 1 
are inert. 

Example 6. Consider y2 + y = x3 + x. For this curve, we compute 

T(a)=a 5+(X2 +x)a 4+a 3+a 2+(x4+ + 1)a 

+ (x 
3 

+ x+1)(x +x + 1). 

Therefore, hk= 5. We find that 
2 2 2 

+(3, Pk=x+ap+(p, py =y+a(x+ 1)(+(x+z)q +( , 

where z = (a3 - 1)/(x2 + x + 1). Therefore, B = A[a, z]. By computing 
the norm, we observe that c2 is divisible by a place over x3 + x + 1 and a 
place over x9+X4+ 1+. In this example, P0 = x and x + 1 both split whereas 
P=x 3+x +1 and x +x2 +1 areinert. 

2.2. Elliptic curves over F3. In the set of eighteen monic, square-free cubic 
polynomials over F3, 

{X3 -X-1, X3 -x2 X 3 + 2 x3 Xx 3 +x, 
3 2 3 2 3 

x -x + 1, x +x -x, x -x+ 1} 

is a subset of representatives for the orbits under the action of the translations 
{x ~-x,x -x+ l,x -x- 1}. The polynomials x3 -x,x3 -x+ 1, 
and x3 - x - 1 are fixed points for this action. Any cubic in this subset with 
a nonzero constant term is irreducible. Our examples take f(x) from this 
subset. Example 7 is the only one of these which occurs in the known finite 
list of curves with class number one. The tables of class numbers in ?23 of [1] 
provide a convenient check on the computations. 
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In Examples 7, 8, and 10 below, we solve explicitly for the coefficients c1 
and c2. In the remaining examples, we give only c1 , since the expression for 
c2 is rather complicated. 

2 3 
Example 7. Consider y = x - x - 1 . For this curve, we compute 

T(a) = a - y(x3 - x). 

Therefore, hk= 1 . We find that a = y(x3 - x), cl =y4 - y2, and c2= 
(Y3 _ y)(Y3 _ y- 1)(y3 -y + 1). 

Example 8. Consider y2 = x - X - X . For this curve, a = (x2 - 1)b, where 
2 

b_-y(x-1)b+x(x+1)=0. 

Therefore, hk = 2. Solving the quadratic equation for b, we obtain 

b = z(x2 + 1) - y(x - 1), 

where z = x. Let u = y/z. Then as one checks, B = A[u, z]. We compute 
C1= u(y2 -1)b/z = u(y2 - 1)((X2 + 1) - u(x - 1)) and c2 = z(R - Su) with 

1 32 R X 3- 1 and 
S = X 12 11 X10 -X9 +X8 +X7 x6 +X5 +X4 +X3 X 2X + 

Example 9. Consider y2 = x3 + X2 - 1 . For this curve, a = x(x + 1)b, where 
3 22 b -xyb - (x + 1)2b -y = 0. 

Therefore, hk = 3. For this example, c1 = y(x2 - x - 1)b. As observed in [6], 
B = A[z], where z3 - z - y =0. We have in fact 

b = -xy(z + 1)2 -(X3 +x +1)(z + 1) -y(x2 + 1). 

Example 10. Consider y = x3 - x. For this curve, a = yb, where 
4 3 3 23 b -(x -x+ 1)b -b +b+(x3 -x+ 1)=0. 

Since the polynomial defining b has only trivial common factors with its deriva- 
tive, hk = 4. We find c1 = b(y2 _ 1) and c2 = b(y2 - 1)(z +yb2), where 

2 ~~~~~~~~4 3 3 
z (b2 +b - l)/y is a unit in B satisfying z -y z + 1 = 0. Since 

3 _ x + 1) + (x3 _ x)yz + (X6 + x4 + X2 1)Z2 3 
b =(x -x1+x-_z(x+ x-) yz 

B =A[z]. 

Example 11. Consider y = x + x. For this curve, a = (x - 1)b, where 

b (x +x - l)yb + x(x - 1)b2 + xyb + x2(x +x 2-x+1). 

Since the polynomial defining b has only trivial common factors with its deriva- 
tive, hk = 4. We compute c1 = (X2 - x - 1)by/x. 
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Example 12. Consider y = x3 - X2 + 1 . For this curve, a = (x + 1)b, where 

b5 - (x2 + x - 1)yb4 + (x + 1)(x3 + X2 -1)b 3-yb2 

+x(x4-x3 +X2 +X - 1)b - (x + 1)(x3 -x - 1)y =O. 

Therefore, hk= 5. We find c1 = xyb. 

Example 13. Consider y2 = x + x2 _ x. For this curve, 

T(a) = a6 + d5a5 + d4a4 + d3a3 + d2a2 + dla + do, 

where 

d= 3(X3 + 
2 

_ X + 1)(X3 _X2+ X + 1 2)(X - x + 1) 

d0 = x2(x + 1)(x2 - x1)(x - +x3+ X2 - X + +y 

d2 = X2(X 2+ 1)(X5- X3+X2 + 1) 

d3 = -X 3(X + 1)3Y 3 

d4 = -X(X2 + 1)(x3 + X2 + X-1) 

d5=-(x3+x2-x+1)y. 

Therefore, hk = 6. We compute c1 = (x + 1)ay/x. 

Example 14. Consider y2 = x - x + 1 . For this curve, 

T(a) =a7 + d6a6 + d5a5 + d4a4+ d3a3 + d2a2+ dla + do, 
where 

3 3 2 3 23 2 do = -(x - x-1)(x + X - 1)(x3 + X2 + X -1)(x3 + X - X + 1)y, 

di = x6 + 4+x3 +X2 -X - 1, 
d2 = _(X 6 +x4 +x3 +X2 -X - l)y, 

d3 =-(X9 +X6 +X4 +x+x +x+ 1), 
3 d4 = -(x -_x)y, 

d5 =x3 -x-1, 
3 d6 = -(x -x- 1)y. 

Therefore, hk = 7. We compute c1 = ya. 
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